On Pillai’s Diophantine equation

نویسندگان

  • Yann Bugeaud
  • Florian Luca
چکیده

Let A, B, a, b and c be fixed nonzero integers. We prove several results on the number of solutions to Pillai’s Diophantine equation Aa −Bby = c in positive unknown integers x and y.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect Powers: Pillai’s Works and Their Developments

A perfect power is a positive integer of the form ax where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine equation ax − by = k is finite. This conjecture amounts to sayi...

متن کامل

on ”NUMBER THEORY AND MATHEMATICAL PHYSICS” On recent Diophantine results

Diophantus of Alexandria was a greek mathematician, around 200 AD, who studied mathematical problems, mostly geometrical ones, which he reduced to equations in rational integers or rational numbers. He was interested in producing at least one solution. Such equations are now called Diophantine equations. An example is y − x = 1, a solution of which is (x = 2, y = 3). More generally, a Diophanti...

متن کامل

Perfect Powers : Pillai ’ S Works

A perfect power is a positive integer of the form a where a ≥ 1 and x ≥ 2 are rational integers. Subbayya Sivasankaranarayana Pillai wrote several papers on these numbers. In 1936 and again in 1945 he suggested that for any given k ≥ 1, the number of positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine equation a − b = k is finite. This conjecture amounts to saying ...

متن کامل

Open Diophantine Problems

Diophantine Analysis is a very active domain of mathematical research where one finds more conjectures than results. We collect here a number of open questions concerning Diophantine equations (including Pillai’s Conjectures), Diophantine approximation (featuring the abc Conjecture) and transcendental number theory (with, for instance, Schanuel’s Conjecture). Some questions related to Mahler’s ...

متن کامل

Pillai’s conjecture revisited

We prove a generalization of an old conjecture of Pillai (now a theorem of Stroeker and Tijdeman) to the effect that the Diophantine equation 3 2 1⁄4 c has, for jcj > 13; at most one solution in positive integers x and y: In fact, we show that if N and c are positive integers with NX2; then the equation jðN þ 1Þ Nj 1⁄4 c has at most one solution in positive integers x and y; unless ðN; cÞAfð2; ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006